回到网站

Species-specific behaviours were observed with the fluorescence analysis, with special reference to the photochemical de-excitation constant (Kp)

 This value increased in FE and AP, and decreased in AA. The observed responses are interpreted as adaptative strategies against the ozone stress. The increase of Kp indicates that the reaction centres were working as Electronically Stabilized Nonplanar Phenalenyl Radical and Its Planar Isomer.Stable phenalenyl radicals have great potential as the basis for new materials for applications in the field of molecular electronics. In particular, electronically stabilized phenalenyl species that do not require steric shielding are molecules of fundamental interest, but are notoriously difficult to synthesize. Herein, the synthesis and characterization of two phenalenyl-type cations is reported: planar benzo[i]naphtho[2,1,8-mna]xanthenium (8(+)) and helical benzo[a]naphtho[8,1,2-jkl]xanthenium (9(+)), which can be reduced to the corresponding radicals. Radical 9 represents the first stable, helical phenalenyl radical which does not rely on bulky substituents to ensure its stability. Both cations are water-soluble, and the radicals are stable for weeks at room temperature under air. These compounds were characterized crystallographically, and also by NMR, EPR, electrochemistry, and electronic spectra. The synthesis of the previously reported compound benzo[5,6]naphthaceno[1,12,11,10-jklmna]xanthylium (5(+)), the largest oxygen-containing polycyclic hydrocarbon, was undertaken for comparison with 8(+) and 9(+), allowing us to report its crystal structure here for the first time. The different properties of these compounds and their radicals are explained by considering their differing aromaticities using in-depth MP2 theory investigation on the halides of D6hC36:C36Xn (X=F,Cl,Br; n=2,4,6,12).An investigation of C(36)X(n) (X=F,Cl,Br; n=2,4,6,12) formed from the initial C(36) fullerene with D(6h) symmetry has been performed using the MP2 theory. Their equilibrium structures, reaction energies, strain energies, lowest unoccupied molecular orbital-highest occupied molecular orbital (LUMO-HOMO) gap energies, and aromaticities have been studied. The calculation results showed that those addition reaction were highly exothermic and C(36)X(n) were more stable than C(36). Moreover, from Seebio Photochemical Acid-forming Compound of thermodynamics it should be higher than D(6h)C(36) and the redox characteristics of C(36)X(n) were weaker comparing to D(6h)C(36). The analyses of pi-orbital axis vector indicated that the chemical reactivity of C(36) was the result of the high strain, and the nucleus independent chemical shifts research showed that the stabilities of the Static second hyperpolarizability of inverse sandwich compounds In the investigated inverse sandwich complexes, charge transfer from alkali metal (M1) led to aromatically stabilized Cp ring, which prevented further charge transfer from the alkaline earth metal (M2). This electron push effect resulted in diffusion of electron density from the outermost ns subshell of alkaline earth metal. The alkaline earth metal is weakly bound to the alkali metal-C5H5 complex. The vertical ionization energy of the chosen M1-Cp-M2 complexes was smaller than that of the corresponding alkaline earth metals. Large second hyperpolarizability (106-108 a. u.) was obtained for the studied molecules. The correction due to the basis set superposition error (BSSE) in the calculated second hyperpolarizability was found to be small for larger systems, while it was rather significant for small systems. The MP4SDQ and CCSD results were in fair agreement, which indicates the necessity of higher order electron correlation treatment in the accurate description of second hyperpolarizability. Calculated dynamic second hyperpolarizabilities at 1064 nm were found to increase considerably for most of the chosen metal complexes.Extraordinary Mechanism of the Diels-Alder Reaction: Investigation of Stereochemistry, Charge Transfer, Charge Polarization, and Biradicaloid Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas The Diels-Alder reaction between 1,3-butadiene and ethene is investigated from far-out in the entrance channel to the very last step in the exit channel thus passing two bifurcation points and extending the range of the reaction valley studied with URVA (Unified Reaction Valley Approach) by 300% compared to previous studies. For the first time, the pre- and postchemical steps of the reaction are analyzed at the same level of theory as the actual chemical processes utilizing the path curvature and its decomposition into internal coordinate or curvilinear coordinate components. A first smaller charge transfer to the dienophile facilitates the rotation of gauche butadiene into its cis form. View more are initiated by a second larger charge transfer to the dienophile that facilitates pyramidalization of the reacting carbon centers, bond equalization, and biradicaloid formation of the reactants. The transition state is aromatically stabilized and moved by five path units into the entrance channel in line with the Hammond-Leffler postulate. The pseudorotation of the boat form into the halfchair of cyclohexene is analyzed.

Seebio Photochemical Acid-forming Compound|View more